\qquad

HDFL/PSYC 430 Activity: What Do Infants Know?
Please read the attached article about infant cognition by Karen Wynn, titled "Addition and subtraction by human infants" (taken from Nature, August, 1992). While reading, think about and provide answers to the following questions (you may talk with the person next to you if you want).

1) What was Wynn interested in (what was her research question). What was her hypothesis?
2) What did she do to test her hypothesis in Experiment 1?
3) What were the independent and dependent variables?
4) What did she find in Experiment 1 ?
5) What did she do to test her hypothesis in Experiment 3?
6) What did she find in Experiment 3 ?
7) What were her conclusions about the abilities of 5-month-old infants from her experiments?
8) Do you feel that her results provide adequate support for the notion that five-month-olds can solve simple addition problems? Why or why not? Can you think of an alternative explanation for her findings?
9) Wynn concludes that her research suggests that the ability of infants to perform simple computations may be innate. What do you think? Even if she had provided conclusive evidence that 5 -month-olds could add, is this evidence that this ability is innate? Why or why not?

Then either : possible outcome 3. Screen drops...

revealing 2 objects

1. Objects placed in case

Then either : poss
5. Screen drops ...

utcome
revealing 1 object

Sequence of events $2-1=1$ or 2
5. Screen drops ...

revealing 2 objects

or : Impossible outcome 5. Screen drops ...
revealing 1 object

med, but could not see the result of the operation. The ' $2-1$ ' group were similarly shown a sequence of events depicting a subtraction of one item from two items (Fig. 1). For both groups of infants, after the above sequence of events was concluded, the screen was rotated downward to reveal either 1 or 2 items in the display case. Infants' looking time to the display was then recorded. Each infant was shown the addition or subtraction 6 times, the result alternating between 1 item and 2 items. Before these test trials, infants were presented with a display containing 1 item and a display containing 2 items and their looking time was recorded, to measure the baseline looking preferences for the two displays.

Infants look longer at unexpected events than expected ones, thus, if they are able to compute the numerical results of these arithmetical operations, they should look longer at the incorrect than at the correct results. The two groups should respond differently to results of 1 and 2 items: the ' $2-1$ ' group should look.longer than the ' $1+1$ ' group when the result is 2 items than when it is 1 item, which is what is found (Table 1). Pretest trials showed that infants in the two groups did not differ from each other in their baseline looking times to 1 or 2 objects. But in the test trials, infants in the two groups differed significantlyinfants in the ' $1+1$ ' group looked longer at 1 , whereas infants in the $2-1$ group looked longer at 2 . Thus, both groups looked longer at the incorrect than at the correct outcomes (Table 1).

Experiment 2 was a replication of experiment 1 with a smaller number of subjects (sixteen). Their mean age was 4 months 25 days (range, 4 months 18 days to 5 months 5 days). The same pattern of results was obtained; infants in each group looked longer at the incorrect outcome than at the correct outcome (Table 1).

These results show that infants know that an addition or subtraction results in a change in the number of items. But the results are consistent with two distinct hypotheses: (1) that infants are able to compute the precise results of simple additions and subtractions and (2) that infants expect an arithmetical operation to result in a numerical change, but have no expectations about either the size or the direction of the change. They

Experiment	Trials	Group	LT(1)*	LT(2)*	$P(2) *$	d.f.	t	P
1	Pretest	$1+1$	20.06	-20.80	0.74	30	0.649	>0.5
		2-1	17.99	19.61	1.62			
	Test	$1+1$	13.36	12.80	-0.53	30	2.078	<0.05
		2-1	10.54	13.73	3.19			
2	Pretest	$1+1$	11.12	10.62	-0.50	14	0.677	>0.5
		2-1	10.35	11.44	1.09			
	Test	$1+1$	12.08	9.45	-2.65	14	1.795	<0.05
		2-1	10.98	8.05	2.94			
$1+2$	Pretest	$1+1$	17.62	18.02	0.41	46	0.873	>0.35
		2-1	15.05	16.47	1.42			
	Test	$1+1$	13.01	11.89	-1.11	46	2.73	<0.005
		2-1	9.59	12.67	3.09			

Statistical significance was determined by between-group t-tests on infants' $P(2)$ values. Probability values are 2-tailed for pretest comparisons, 1-tailed for test comparisons. In experiment 1, a trial concluded when an infant looked away for 2 consecutive seconds after looking at the display for at least 4 cumulative seconds, or had looked for 30 cumulative seconds. Experiment 2 ; same criteria, except that minimum cumulative looking time was only 2 s . The shorter mean looking times in experiment 2 are probably due to this procedural change. Times are lower in test than pretest trials because infants' looks decrease during the experiment as they become more familiar with the display. Experiment 2,6 infants in the $1+1$ group, 10 infants in the $2-1$ group.

* $P(2)=L T(2)-L T(1)$; where $P(2)$, preference for $2 ; \operatorname{LT}(1)$ and $L T(2)$ are the mean looking times to 1 and 2 items (in'seconds).
may simply expect that adding an item to an item will result in some number other than 1 ; and that subtracting an item from 2 items will result in some number other than 2 . To determine whether infants are able to compute the precise results of simple arithmetical operations, I conducted a third experiment.

Experiment 3 tested 16 infants with a mean age of 4 months 18 days (range, 4 months 4 days to 5 months 4 days). Infants were shown a ' $1+1$ ' addition as before, except that the final number of objects revealed behind the screen was either 2 or 3 . In both cases, the result is numerically different from the initial number of items. If infants are computing the exact numerical result of the addition, they would be expected to look longer at the result of 3 items than of 2 items. This pattern was indeed observed (Table 2); infants significantly preferred 3 in the test trials, but not the pretest trials, showing that they were surprised when the addition appeared to result in 3 items. The results from the three experiments support the claim ${ }^{7}$ that 5 -month-old human infants are able to calculate the precise results of simple arithmetical operations.

There is an alternative explanation for infants' success in these experiments. Infants may be calculating the results of the addition and subtraction, not of a discrete number of items, but of a continuous amount of physical substance; infants may possess an ability to measure and operate on continuous quantities. But there are reasons to prefer the hypothesis that it is the number of items, not amount of substance, that infants are computing. It has been shown that infants are sensitive to small numerical changes ${ }^{1-4}$, but there is no evidence of a sensitivity to small differences in amount of physical matter. Infants are predisposed to interpret the physical world as composed of discrete, individual entities when perceiving spatial layouts ${ }^{14,15}$, and they represent the precise spatial locations and trajectories of individual objects relative to each other ${ }^{16,17}$. Thus, the notion of 'individual entity' plays a prominent role in infants' conceptualization and representation of the physical world, and they

Received 20 May; accepted 16 July 1992

1. Starkey, P. \& Cooper. R. G. Science 210, 1033-1035 (1980).
2. Strauss, M. S. \& Curtis, L. E. Child Dev. 52, 1146-1152 (1981).
3. Antell, S. \& Keating. D. P. Child Dev. 54, 695-701 (1983).
4. van Loosbroek, E. \& Smitsman, A. W. Devi Psychol 26, 916-922 (1990)
5. Starkey, P. Spelke, E. S. \& Gelman, R. Science 222, 179-181 (1983)
6. Starkey. P.. Spelke. E. S. \& Gelman, R. Cognition 36, 97-127 (1990)
7. Wymn, K. Mind Lang (in the press).
8. Davis, H. Albert, M. \& Barron. R. W. Science 228, 1222 (1985)
9. Cooper, R. G. in Origins of Cognitive Skills 157-192 (ed. Sophian. C.) (Erlbaum, Hillsdale, New Jersey. 1984).
10. Chi, M. T. H. \& Klahr. D. L exp. Child Psychol. 19, 434-439 (1975)
11. Silverman. I. W \& Rose. A. P. Devl Psychot 16, 539-540 (1980).

TABLE 2 Looking times and preferences for 3 items over 2

Condition	$\mathrm{LT}(2)^{*}$	$\mathrm{LT}(3)^{*}$	$\mathrm{P}(3)^{*}$	d.f.	t	P
Pretest	14.16	13.87	-0.29	15	-0.224	>0.5
Test	9.96	11.89	1.92	15	2.044	<0.03

Statistical significance was determined by t-tests comparing infants' $P(3)$ values to the null hypothesis of no preference. Probability value for pretest comparison is 2 -tailed; that for test comparison is 1-tailed. As in experiments 1 and 2 , infants were excluded if they showed more than a 10 -second pretest preference for one of the numbers; the pattern of results remains the same when these infants are included in the analyses. Experiment 3 used the same criterion for end-of-trial as that used in experiment 2.

* $P(3)=L T(3)-L T(2)$, where $P(3)$, preference for $3 ; \operatorname{LT}(3)$ and $\operatorname{LT}(2)$ are the mean looking times to 3 and 2 items (in seconds).
have abilities that allow them to track distinct entities over time and space. This, together with infants' sensitivity to small numerical differences in collections of items, lends independent support to the hypothesis that infants possess a mechanism for quantifying collections of discrete entities. The most plausible explanation for the findings presented here is that infants can compute the results of simple arithmetical operations.

In sum, infants possess true numerical concepts-they have access to the ordering of and numerical relationships between small numbers, and can manipulate these concepts in numerically meaningful ways. This in turn indicates that the mental process giving rise to these concepts yields true numerical outputs that encode numerical relationships, not holistic percepts derived from a pattern-recognition process. The existence of these arithmetical abilities so early in infancy suggests that humans innately possess the capacity to perform simple arithmetical calculations, which may provide the foundations for the development of further arithmetical knowledge ${ }^{7,18}$.
12. Mandler. G. \& Shebo. B. J. \& exp. Psychol. Gen 11, 1-22 (1982)
13. Gallistel, C. R. The Organization of Learning 343-348 (MIT, Cambridge. Massactusetts, 1990).
14. Spelke, E. S. in Perceptual Development in infancy: Minnesota Symposia on Child Psychology Vol. 20 (ed. Yonas. A.) 197-234 (Erlbaum, Hillsdale, New Jersey, 1988).
15. Spelke, E. S. Cog Science 14, 29-56 (1990).
16. Baillargeon. R. Cognition 38, 13-42 (1991).
17. Baillargeon, R. \& DeVos. J. Child Dev. 62, 1227-1246 (1991).
18. Wynn, K. Cog. Psychol. 24, 220-251 (1992).

