Population Growth

Formulas:
$N_{1}=N_{0}+r N_{0}$
$r=\frac{N_{1}-N_{0}}{N_{0}}$
You start with 20 rabbits (assume there are and equal number of males and females).
Your rabbits are a slow breeding variety that you allow to breed only once a year. On average you only get three baby rabbits a year for every 10 adults in your breeding population.

What is N_{0} (That is, the number you have right now, at the start)? \qquad
How many baby rabbits will you have next year? \qquad
How many total rabbits will you have in your population next year $\left(N_{1}\right)$? \qquad
What is the value of r for this population? \qquad
Calculate the following values and then draw a graph of the population size over time.

t (Time in years)	N (Current Pop. Size)	$r N_{t}$ Number of baby rabbits produced
0	20	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		

When was the change in population size the slowest and when was it the fastest? (Look at either $r N_{t}$ or the steepness of the line on your graph).

If the population growth rate (r) was the same throughout, why wasn't the change in population size constant? (Why isn't your graph a straight line?

Growth with limits

In the real world, what are some of the likely consequences that might occur when a population becomes too large?

