

Population Growth Worksheet

Environmental Studies 148 Lecture Notes

3.

4.

5.

- 1) Population Growth
 - A) **Exponential** growth without limits
 - i) Definition:
 - the unrestricted increase in a population (also called the **biotic potential** of a population)
 - ii) Formula: Non-overlapping Generations: $N_t = N_{t-1} + rN_{t-1}$

iii) Overlapping Generations:
$$\frac{dN}{dt} = rN$$

(This is the *instantaneous* rate of change $\rightarrow dN/dt$ stands for the instantaneous change in N at a given time).

- iv) Calculating r from population sizes: $r = \frac{(N_t-N_{t-1})}{N_{t-1}}$
- v) Example:

Γ

Exponential Growth of Rabbits: r = 0.3							
(Adapted f	(Adapted from Campbell, et al, Biology Concepts and						
Connections 6^{th} ed.)							
Time	N	rN					
(Months)	(population	(change in population size =					
	size now)	baby rabbits)					
0	20	6					
1	26	8					
2	34	10					
3	44	13					
4	57	17					
5	74	22					
6	96	29					
7	125	38					
8	163	49					
9	212	64					
10	276	83					
11	359	108					
12	467	140					

6.

B) Carrying capacity

٦

the maximum number of individuals of any species that can be supported by a particular ecosystem on a sustainable basis

- ii) Carrying capacity is symbolized as **K**
- C) Logistic growth growth limited by a carrying capacity
 - i) Formula: $\frac{dN}{dt} = rN \left(1 \frac{N}{K}\right)$

7.

ii)) Example:								
	Effect of K on Growth Rate as N approaches K. $K = 1,000$, $r = 0.1$								
	(Adapted from Campbell, et al, Biology Concepts and Connections 6 th ed.)								
	Ν	rN	<u>N</u>	1- <u>N</u>	dN = rN	$(1 - \underline{N})$	baby		
			K	K	dt	K	rabbits		
	10	1	0.01	0.99		0.99			
	100	10	0.1	0.9		9.00			
	400	40	0.4	0.6		24.00			
	500	50	0.5	0.5		25.00			
	600	60	0.6	0.4		24.00			
	700	70	0.7	0.3		21.00			
	900	95	0.9	0.05		0.25			
	1,000	100	1.0	0.00		0.00			

iii) Points to remember:

- (a) Population growth slows and ceases as population density increases
- (b) Increasing population density results in a decrease in birth rate, an increase in death rate, or both
- (c) Produces "s" shaped curve

iv) Environmental resistance -

factors that tend to reduce population growth rates:

- (a) Density dependent factors linked to population size (disease, lack of food)
- (b) **Density-independent** factors that limit growth that are not linked to population size. Often environmental (droughts, floods, habitat destruction)

D) Population Overshoots ("Boom and Bust" Cycles)

- i) Some populations fluctuate in density with regularity
 - (a) Food shortages
 - (b) Predator-prey interactions

10

9.

11
12
13.
14.

15.

- E) When might you want to calculate these things?
 - i) Conservation biology
 - ii) Managing invasive species
 - iii) Sustainable harvest
 - iv) Human population growth
- 2) "r-selected" and "K-selected" speciesA) Refers to life-history strategy, or how organism schedules its reproduction.
 - B) "r" is from the population growth equation. "K" is from carrying capacity.
 - C) General comparisons:

r-selected species	K-selected species		
Short life	Long Life		
Rapid Growth	Slower Growth		
Early Maturity	Late Maturity		
Many, Small Offspring	Few, Larger Offspring		
Little Parental Care	High Parental Investment		
Favored in unstable environments	Favored in stable environments		
Early succession	Late succession		
"generalists"	"specialists"		

17.

18.

- D) These traits are subject to selection!
 - i) Example: guppies, pike-cichlids, and killifish
 - ii) Example: Dwarf wheat \rightarrow tradeoff between straw (stem) and grain production
 - iii) Implications for fishing industry?